
Next-Generation Debuggers

For Reverse EngineeringFor Reverse Engineering

The ERESI team
eresi@asgardlabs.org

This presentation is about ..

• The Embedded ERESI debugger : e2dbg
• The Embedded ERESI tracer : etrace
• The ERESI reverse engineering language
• Unification & reconstruction of debug formats
• Program analysis builtins (focusing on

control flow graphs)

The ERESI project
• Started in 2001 with the ELF shell
• Developed at LSE (EPITA security

laboratory)
• Contains more than 10 components
• Featured in 2 articles in Phrack

Magazine:
– The Cerberus ELF Interface (2003)
– Embedded ELF Debugging (2005)

Limitations of existing UNIX
debugging framework

• GDB : Use OS-level debugging API (ptrace) -
> does not work if ptrace is disabled or absent

• Very sensible to variation of the environment
(ex: ET_DYN linking of hardened gentoo)

• Strace / Ltrace : use ptrace as well. Very few
interaction (command-line parameters)

Limitations of existing
frameworks

None of these frameworks rely on a
real reverse engineering language

The ERESI team
• Started with a single person in 2001 (The ELF

shell crew). Remained as it during 3 years.
• Another person developed libasm

(disassembling library) since 2002
• A third person developed libdump (the

network accessibility library) in 2004-2005
• Since mid-2006 : community project (6

persons)

The modern ERESI project

• elfsh (and libelfsh): The ELF shell
• e2dbg (and libe2dbg): The Embedded

ELF debugger
• etrace : The Embedded tracer
• librevm : the language interpreter
• libmjollnir : fingerprinting & graphs library
• libaspect : Aspect oriented library

The modern ERESI project
(cont)

• libasm : typed disassembling library
• libedfmt : the ERESI debug format library
• liballocproxy : allocation proxying library
• libui : The user interface (readline-based)

The modern ERESI project :
sumup

ERESI contributions (1)

• Can debug hardened systems (does not
need ptrace) : PaX/grsec compatible

• Very effective analysis : improve the
performance of fuzzing, heavy-weight
debugging (no context switching
between the debugger and the
debuggee : the dbgvm resides in the
debuggee)

ERESI contributions (2)
• A reflective framework : possibility to change

part of it in runtime without recompilation
• The first real reverse engineering language !!!

– hash tables
– regular expressions
– loops, conditionals, variables
– The complete ELF format objects

accessible from the language

The ERESI language :
example 1

load /usr/bin/ssh

set $entnbr 1.sht[.dynsym].size
div $entnbr 1.sht[.dynsym].entsize
print Third loop until $entnbr :
foreach $idx of 0 until $entnbr
 print Symbol $idx is 1.dynsym[$idx].name
forend

unload /usr/bin/ssh

The ERESI language :
example 2

add $hash[hname] Intel
add $hash[hname] Alpha
add $hash[hname] Sparc32
add $hash[hname] Mips
add $hash[hname] Sparc64
add $hash[hname] AMD
add $hash[hname] Pa-risc
foreach $elem of hname matching Sparc

print Regex Matched $elem
 endfor

List of available hash tables

• Basic blocks (key: address)
• Functions (key: address)
• Regular expression applied on the key
• Many dozen of hash tables (commands,

objects ..) : see tables command of ERESI
• Currently not supported : hash table of

instructions, of data nodes (too many
elements) => need of demand-driven analysis

The ERESI language :
example 3

type archtypes = elm:string[55]
inform archtypes elfsh_arch_type
type archaddr = elm:long[55]
inform archaddr elfsh_arch_type
print Now print Strings
print 107.archtypes[elfsh_arch_type].elm[0]
print 107.archtypes[elfsh_arch_type].elm[1]
print Now print addresses
print 107.archaddr[elfsh_arch_type].elm[0]
print 107.archaddr[elfsh_arch_type].elm[1]

e2dbg : the Embedded ELF
debugger

• Does not use ptrace. Does not have to use
any OS level debug API. Evades PaX and
grsecurity.

• Proof of concept developed on Linux / x86 .
• Scriptable using the ERESI language
• Support debugging of multithreads
• No need of ANY kernel level code (can

execute in hostile environment)

e2dbg : features

• Classical features:
– breakpoints (using processor opcode or

function redirection)
– stepping (using sigaction() syscall)

• Allocation proxying
– keep stack and heap unintrusiveness

• Support for multithreading

Allocation proxying

• We manage two different heap allocator
in a single process:
int hook_malloc(int sz)
{

if (debugger)
return (aproxy_malloc(sz));

return (orig_malloc(sz))
}

Handling of debug format &
The Embedded ELF Tracer (etrace)

Debugging format

• Describe each element of a program
– Give names and position of:

• Variables
• Functions
• Files
• ….

– Store program types dependences
between them

Debugging format - issues

• Distinction of debugging format
– stabs, dwarf, stabs+, dwarf2, gdb, vms ...
– Different ways to parse, read, store …

• For example with stabs and dwarf2
– Stabs does not contain any position reference

• You store the whole parsing tree

– Dwarf2 use read pattern apply directly on data
• You cannot store everything (too big)

– …

Uniform debugging format
• Parsing

– So we can read the debugging format
• Transforming

– We transform it on a uniform representation
– Keep only useful information

• Cleaning
– We keep only uniform debugging format

• New debugging format
– We change only backend part

• Register types on ERESI type engine

Embedded ELF tracer

• Tracer using ELFsh framework
• Tracing internal and external calls
• Dynamic and supports multiple architecture

– It does not use statically stored function
prototypes

– Use gcc to reduce architecture dependence
• Work with and without debugging format
• Recognize string, pointers and value

Embedded ELF trace - script
#!/usr/local/bin/elfsh32
load ./sshd
traces add packet_get_string
traces create privilege_sep
traces add execv privilege_sep
traces create password
traces add auth_password password
traces add sys_auth_passwd password
save sshd2

Etrace – output on sshd
+ execv(*0x80a5048 “(…)/openssh-4.5p1/sshd2", *0x80aa0a0)

+ packet_get_string(*u_int length_ptr: *0xbf8f4738)

- packet_get_string = *0x80ab9f0 "mxatone"

debug1: Attempting authentication for mxatone. (…)

+ packet_get_string(*u_int length_ptr: *0xbf8f42fc)

- packet_get_string = *0x80a9970 "test1"

+ auth_password(*Authctxt authctxt: *0x80aaca0, void* password:
*0x80b23a8 "test1")

+ sys_auth_passwd(*Authctxt authctxt: *0x80aaca0, void*
password: *0x80b23a8 "test1")

- sys_auth_passwd = 0x0

- auth_password = 0x0

Etrace – Performance

Embedded ELF tracer

• Trace backend
– Analyze target function
– Create proxy functions

• Embedded tracer
– Inject proxy functions in the binary
– Redirect calls into our proxy functions
– Create a new binary

• Automatic using the ELF tracer

Etrace - Processing function
arguments

• With debugging
information
– Extract arguments

information
• size
• names
• type names
• …

• With architecture
dependent argument
counting
– Backward analysis
– Forward analysis

Etrace - Generate binary
module

• Generate a .c file
– Call tree (padding)
– Dynamic check pointers,

strings or value

• Benefits
– Architecture independent
– New feature

implementation
– Less bugs
– Use ELFsh framework

 Libelfsh - ET_REL injection
• ET_REL injection principle

– Add a binary module directly
on target binary

• Merge symbols and sections
list

• Section injection
– Code sections

• Injected before .interp
– Data sections

• Injected after .bss

• Relocation in two steps

Libelfsh - Redirect target
function

• Internal function
– CFLOW technique

• External function
– ALTPLT technique

• Custom redirection
– Vector benefit
– Your own redirection

mechanism

Program analysis

A Graph Analyzer

• Graph analyzers
– Identify blocks and functions
– Identify links (calls and jumps)
– Build a graph with this info

• Control Flow Graphs (CFGs)
– Inter-blocks CFGs vs. Interprocedural

CFGs
– Main instrument to Control Flow analysis

A Graph Analyzer

• Control Flow Analysis
– Essential to some kinds of further analysis

and to optimization
– Gives information about properties such as

• Reachability
• Dominance
• ...

A Graph Analyzer – Libasm

• Libasm
– Lowest layer of this application
– Multi-architecture disassembling library

• Intel IA-32
• SPARC V9
• In the near future, MIPS

– Unified type system

A Graph Analyzer – Libasm

A Graph Analyzer – Libasm

• The unified instruction type system
– Works with non-mutually exclusive types
– Provides means to “blindly” analyze an

instruction
– Eg. Control Flow analysis!

A Graph Analyzer - Libasm

• Libasm vectors
– Storage of pointers to opcode handling

functions
– 4 dimensions: 1 for machine info, 3 for

opcode info
– Runtime dumping and replacing of vectors

• Built-in language constructs
• Easy-made opcode tracer!

A Graph Analyzer –
libmjollnir

• Libmjollnir
– Upper-layer component
– Code fingerprinting and program analysis

• CFG construction
– Libmjollnir treats both: blocks and functions
– Separate representations (structures)

A Graph Analyzer –
libmjollnir

• Containers
– Generic structures to encapsulate blocks

and functions
– Have linking (input and output links)

information
– Have a pointer to data and type

information to interpret this data
accordingly

A Graph Analyzer –
libmjollnir

• Containers
– Allow for more abstract graph analysis

(analyzing a graph of containers)
– In the future, may also store data nodes

(Data Flow analysis)
– Also for the future, containers of containers

• Even higher abstraction of links and
relationships

Conclusion

Conclusion

• New foundations for reverse
engineering and debugging of closed-
source software using in-process
analysis

• A language approach for reversing
• Many concrete applications (embedded

tracer and debugger)

The near future

• Binding of demand-driven dataflow
analysis in the ERESI language

• Program transformation builtins for
custom decompilation

• More portability (OS / architectures)
• More integration between the

components (tracer / debugger mostly)

Questions ?

• Thank you for your attention
• If you are interested in joining us, come

to talk after the conference.
• The source code of the current version

(0.77b3) is available at our web CVS:
– http://elfsh-cvs.asgardlabs.org/

